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Abstract. The Wallace Fourier-Bessel expansion of the scattering amplitude is generalised to the case of
the scattering of a spin-one particle from a potential with a single tensor coupling as well as central and
spin-orbit terms. A generating function for the eikonal-phase (quantum) corrections is evaluated in closed
form. For medium-energy deuteron-nucleus scattering, the first-order correction is dominant and is shown
to be significant in the interpretation of analysing power measurements. This conclusion is supported
by a numerical comparison of the eikonal observables, evaluated with and without corrections, with those
obtained from a numerical resolution of the Schrödinger equation for d-58Ni scattering at incident deuteron
energies of 400 and 700 MeV.

PACS. 03.65.Nk Scattering theory – 24.70.+s Polarization phenomena in reactions – 25.10.+s Nuclear
reactions involving few-nucleon systems – 25.40.Hs Transfer reactions

1 Introduction

The eikonal approximation developed by Glauber [1] is
one of the most successful and transparent theories that
describe the scattering of hadrons from nuclei at small an-
gles and high energies. There have been attempts to ex-
tend the Glauber approximation to include tensor forces
in spin-half [2] as well as spin-one interactions [3]. How-
ever, the Glauber method of deriving the eikonalised am-
plitude is not directly applicable to the case of spin-one
particles interacting with spinless targets because of the
non-commuting nature of the tensor potential. As will be
shown, this problem can be avoided in the case where just
one of the three tensor potentials is present, and that is
the situation that is studied in detail here.

The standard Glauber amplitude exhibits some defi-
ciencies in the multiple-scattering terms [4]. While the
first-order term in the interaction power series expansion
is real, and identical to that of the first-order Born approx-
imation, the higher-order terms alternate between being
purely imaginary and purely real. In particular, while the
imaginary part of the second-order Born approximation
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has a corresponding Glauber term, the real part disap-
pears within the Glauber expansion. This defect can be
traced back to the assumption that the phase is evaluated
by integrating the potential along a classical trajectory,
which is taken to be a straight line.

Wallace [5–7] has developed a complete high-energy
expansion of the Fourier-Bessel representation of the scat-
tering amplitude for the scattering of a non-relativistic
spin-zero particle from a central potential. This relaxes the
original small-angle assumption and therefore improves
upon the Glauber straight-line approximation. Wallace’s
method works by converting the partial-wave scattering
amplitude exactly into a Fourier-Bessel integral represen-
tation in terms of the impact parameter b. By expand-
ing the WKB phase as a series in powers of the poten-
tial strength, to first order he obtains the Glauber eikonal
phase. Higher-order terms then provide the leading quan-
tum corrections to the straight-line semiclassical path as-
sumption. Among the other benefits, these corrections in-
duce a real part in the second-order contribution to the
scattering amplitude. Wallace’s work has recently been
extended to few-body Glauber models in which the pro-
jectile is treated as a composite system of clusters in which
the eikonal phase for the scattering of each projectile con-
stituent from the target is corrected [8,9]. However, only
central potentials were considered.

Waxman et al. [10] extended this scheme to investi-
gate the scattering of non-relativistic spin-half particles. In
their work they distinguished carefully between the impact
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parameter dependence coming from linear-momentum fac-
tors and the angular-momentum variation of the eikonal
phases arising from the spin-orbit coupling. This distinc-
tion is important in the case of spin-dependent interac-
tions, which are momentum dependent as well as lacking
spherical symmetry. Waxman et al. also emphasised that
for spin-half scattering, due to parity conservation, the
Schrödinger equation does not mix states with total an-
gular momentum j = l + 1/2 and j = l − 1/2, making it
possible to evaluate the eikonal quantum corrections un-
ambiguously.

We generalise the approach of Waxman et al. [10] to
the scattering of spin-one particles. A deuteron may in-
teract with a spinless target through a central, a vector
spin-orbit and three tensor potentials, corresponding to
the coupling of the spin to the radial variable, the lin-
ear momentum, and the orbital angular momentum of the
particle [11]. The relative importance of these potentials
in the scattering of deuterons from nuclei depends very
much upon the energy range being studied. In order to
avoid the commutation problem, in this paper we limit
our analysis to the second-order spin-orbit tensor term
VL, which contains operators that do not mix different
angular-momentum states. After presenting the partial-
wave structure of the amplitudes in sect. 2, Wallace’s
derivation of the Fourier-Bessel representation for spin-
less interactions is discussed in sect. 3 and then extended
to spin-one scattering. The expansion of the WKB phase
shifts in powers of the potential strength is discussed in
sect. 4, using the methods derived by Waxman et al. for
spin-half scattering. The first quantum corrections to the
eikonal phases, deduced in sect. 5, improve the second-
order eikonal contributions, bringing the amplitudes ap-
preciably closer to the high-energy limit of the Born series.
The accuracy of the modified eikonal approach is tested in
sect. 6 by resolving numerically a relativistic Schrödinger
equation describing elastic scattering of deuterons by nu-
clei. Observables corresponding to d-58Ni scattering at 400
and 700 MeV are then compared in the numerical and
eikonal approaches and it is seen that the quantum modi-
fications improve significantly the agreement between the
two. Our conclusions are presented in sect. 7.

2 Partial-wave decomposition

In the case of spin-half scattering, parity and angular-
momentum conservation ensure that states of different or-
bital angular momentum do not mix, but in general this
is no longer true for spin-one particles. There are three
possible tensor potentials proportional to the tensors

TL = S2 · R2 (L · L) = (S · L) 2 + S · L − 2
3
L2 ,

Tr = (S · r) 2 − 2r2

3
,

Tp = (S · p) 2 − 2 p2

3
.

(2.1)

We have here used the recoupling operator for spin S

S2 · R2 (α · β) = (S · α) (S · β)
− i
2

S · (α × β)− S
2

3
(α · β) , (2.2)

in conjunction with the position r, momentum p, and
angular-momentum L operators. Of the three tensor op-
erators, only the quadratic spin-orbit term has the simpli-
fying feature of not mixing the angular-momentum states
and it will be the only one studied in this paper. We there-
fore consider the optical potential defined by [11],

V (S, r) = VC (r) + VS (r) S · L + VL (r) TL , (2.3)

where we are working in units for which 2m = � = 1.
The resulting scattering amplitude has the partial-wave
decomposition

F (θ) =
1
2ik

∞∑
l=0

(2l + 1)

×
{
T+

l

∏
l+

+T−
l

∏
l−

+T 0
l

∏
l0

}
Pl (cos θ) , (2.4)

where the partial-wave amplitude is expressed in terms
of the phase shift δjl through T j

l =
(
e2iδj

l − 1
)
, and the

projection operators are defined by [12]

∏
l+

=
(S · L)2 + (l + 2) (S · L) + (l + 1)

(l + 1) (2l + 1)
,

∏
l−

=
(S · L)2 + (l − 1) (S · L)− l

l (2l + 1)
,

∏
l0

= − (S · L)2 + (S · L)− l (l + 1)
l (l + 1)

. (2.5)

Here the indices (+, 0,−) denote states with total an-
gular momentum j = (l + 1, l, l − 1), respectively.

Following Glauber [1], we take the z (quantisation)
axis to lie along the direction of the average of the initial
and final momenta k = (ki + kf), so that the experimental
observables must be obtained by subsequently rotating the
scattering matrix through an angle of −θ/2 around the
normal n̂ to the scattering plane, where θ is the scattering
angle. In the Glauber frame the scattering matrix can be
written as

F (θ) = A (θ) +B (θ) (S · n̂)
+Ck (θ) S2 · R2

(
k̂, k̂

)
+Cn (θ) S2 · R2 (n̂, n̂) , (2.6)
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where

A (θ) =
1
6ik

∞∑
l=0

{
(2l + 1) T+

l + (2l − 1) T−
l

+(2l + 1) T 0
l

}
Pl (cos θ) ,

B (θ) =
1
4k

∞∑
l=0

{
(2l + 3)
(l + 1)

T+
l − (2l − 1)

l
T−

l

− (2l + 1)
l (l + 1)

T 0
l

}
P 1

l (cos θ) ,

Ck (θ) =
1

2ik sin θ

∞∑
l=0

{
1

(l + 1)
T+

l +
1
l
T−

l

− (2l + 1)
l (l + 1)

T 0
l

}
P 1

l (cos θ) ,

Cn (θ) = (3 cos θ + 1) Ck (θ)

+
1
2ik

∞∑
l=0

{
l T+

l + (l + 1) T−
l

− (2l + 1) T 0
l

}
Pl (cos θ) .

(2.7)

Note that T−
l = 0 for l = 0.

3 Fourier-Bessel expansion of the scattering
amplitude

We here follow closely the procedure established by Wal-
lace [5] in his study of spin-zero interactions and extended
by Waxman et al. [10] to the treatment of the spin-half
case. For the scattering of a spin-zero particle by a spheri-
cally symmetric potential, the partial-wave decomposition
of eq. (2.4) reduces to

F (θ) =
1
2ik

∞∑
l=0

(2l + 1)
(
e2iδ(l) − 1

)
Pl (cos θ). (3.1)

The corresponding impact parameter, b, representa-
tion is

F (θ) = −ik
∞∫
0

db b J0 (qb) Γ (b) , (3.2)

where the profile function Γ (b) =
(
ei χ(b) − 1

)
and the

momentum transfer q = 2ksin(θ/2).
To derive a connection between these two descriptions,

Wallace converted the partial-wave sum into an integral
over real values of l, using the Euler-summation formula.
He then expanded the Legendre polynomials as infinite
series of derivatives of the Bessel functions J0(x). For a
well-behaved potential, which gives rise to phase shifts
that can be interpolated smoothly for real l, the eikonal
phase χ(b) may be related to the δ(l) through

ei χ(b) = (2l + 1)−1 W (2l + 1) e2iδ(l), (3.3)

where the operator W is given by

W (b) =
n∑

m=0

1
(2m) !

B2m (x)
{
−1
4
(2l + 1)

∂

∂b

}[
∂

∂b

]2m

.

(3.4)
The B2m(x) are generalised Bernoulli polynomials [13],

with B0(x) = 1 and B2 (x) = −x/6. In the evaluation
of eq. (3.3) the semiclassical identification of the impact
parameter, b = (l + 1/2)/k, is assumed.

We now extend the Fourier-Bessel representation of the
scattering amplitude to spin-one interactions described
by the potential of eq. (2.3). From the definition of the
S-matrix elements, the profile function corresponding to
the amplitude A(θ) becomes

ΓA (b) = − i
3

{
e[i(χ̄(b)−Dχ(b)/3)]

×
(
1 + 2 cos (∆χ (b) /2) eiDχ(b)/2

)
−3 +

2i
kb

sin (∆χ (b) /2) e[i(χ̄(b)+Dχ(b)/6)]

}
, (3.5)

where the scalar, vector and tensor phase functions χ̄(b),
∆χ(b), and Dχ(b) are related to the phase shifts by

χ̄ (b) ≡ 2
3

(
δ+l + δ−l + δ0l

)
,

∆χ (b) ≡ 2
(
δ+l − δ−l

)
,

Dχ (b) ≡ 2
(
δ+l + δ−l − 2 δ0l

)
.

(3.6)

The other profile functions may be similarly treated,
leading to

ΓB(b) =
1

2 sin θ

{
2ikb sin (∆χ (b) /2) e[i(χ̄(b)+Dχ(b)/6)]

+cos (∆χ(b)/2)
(
e[i(χ̄(b)+Dχ(b)/6)]−e[i(χ̄(b)−Dχ(b)/3)]

)
− i

kb
sin (∆χ (b) /2) e[i(χ̄(b)+Dχ(b)/6)]

}
, (3.7)

ΓK
C (b) = − i

sin2 θ

{
e[i(χ̄(b)−Dχ(b)/3)]

×
(
1− cos (∆χ (b) /2) e[iDχ(b)/2]

)
+
i

2kb
sin (∆χ (b) /2) e[i(χ̄(b)+Dχ(b)/6)]

}
. (3.8)

The resulting amplitudes can then be written as
Fourier-Bessel transforms

A (θ) = k

∞∫
0

b db J0 (qb) SF (b) ΓA (b) ,

B (θ) = 2 sin (θ/2)

∞∫
0

b db J1 (qb) SF (b) ΓB (b) ,

Ck (θ) = 2 sin (θ/2)

∞∫
0

b db J1 (qb) SF (b) Γ k
C (b) ,

Cn (θ) =
1
2
(3 cos θ + 1) Ck (θ)

−k sin2 θ

∞∫
0

b db J0 (qb) SF (b) Γ k
C (b) .

(3.9)



188 The European Physical Journal A

The operator SF (b), defined by,

SF (b) = b−1 W (b) b. (3.10)

is the impact parameter version of eq. (3.3).

4 A dynamical model for the phase shift

Following Wallace [5], we take the WKB approximation
and its generalisations as the dynamical model for the
phase shift function:

δWKB
j (l) = (l + 1/2)

π

2
− krt

−
∞∫

rt

{ (
k2 − Vj (l, r)− (l + 1/2)2 /r2

)1/2

− k
}
dr.

(4.1)

For a given incident momentum (k), the distance of
closest classical approach (rt) for a particle of angular mo-
mentum l gets close to that of the free case (l/k) as l be-
comes large. It should be noted that this formula should
remain valid even when the potential depends explicitly
upon l.

Expanding the integrand in powers of V (l, r)/k2 and
integrating by parts, the first-order term gives the stan-
dard eikonal-phase function

δWKB
j (l) |1st order

∼= − 1
4k

∞∫
−∞

Vj (l, r) dz, (4.2)

where r2 = b2+z2. The impact parameter in this limiting
case is the distance of closest approach of the classical
trajectory, though this interpretation becomes fragile as l
approaches zero.

In the neighbourhood of a turning point the expansion
parameter becomes too large to be at all meaningful. Wal-
lace [5–7] expands eq. (4.1) around the dimensionless pa-
rameter ε0 ∼ V0/�kv, (where V0 is the potential strength,
and v is the incident velocity) and shows that the WKB
phase shift can be expressed as

δWKB
j (b) =

∞∑
n=0

δjn (b) , (4.3)

where

δjn (b) = − 1
2k (n+ 1) !

{{
b

k

∂

∂b
− ∂

∂b

}
1
2k

}n

×
∞∫

rt

dz [Vj (b , r)] n+1. (4.4)

Waxman et al. [10] noticed that the differential oper-
ator appearing here could be replaced by

−
{
∂

∂k

}
l

=
b

k

{
∂

∂b

}
k

−
{
∂

∂k

}
b

. (4.5)

This fixed-l form of the operator demonstrates the
independence of the expansion in eq. (4.4) from the
l-structure of the potential and also stresses the dynami-
cal nature of the series. Using the displacement operator,
they then rewrite eq. (4.1) as

δWKB
j (l) =

∞∫
k2

dk′2
∞∫
0

rdr
{
1− exp

[
−Vj (l, r)

(
∂

∂k′2

)
l

]}

×
(
k′2r2 − (l + 1/2)2

)−1

Θ (k′r − (l + 1/2)) ,

(4.6)

where Θ is the Heaviside step function. Expanding the
exponential and integrating over k′2, it is then straight-
forward to arrive at the Wallace expansion. The first two
terms of the series are

δj0 (b) = − 1
2k

∞∫
−∞

dz Vj ( r) ,

δj1 (b) = − 1
8k3

{
1 + b

∂

∂b
− k ∂

∂k

} ∞∫
−∞

dz V 2
j ( r) .

(4.7)

TheWKB phase thus contains the Glauber phase func-
tion δj0(b) as its leading-order term in a derivative expan-
sion in powers of the potential. Higher-order terms may
be thought of as dynamical corrections to the Glauber
straight-line trajectory inside the potential. Wallace fur-
ther showed that the inclusion of higher-order corrections
to the WKB approximation, as given by Rosen and Yen-
nie [14], leads to an extra contribution which is linear in
the potential and which cancels the unitarity corrections
to the SF (b) operator.

5 The eikonal amplitude

Substituting the eikonal phases, defined for each of the
potentials occurring in eq. (4.7)

χ(c,l,s) (b) = 2δWKB
(c,l,s) (b) , (5.1)

into eq. (3.6) and retaining only the first-order term in
eq. (4.3), we obtain

χ̄0 (b) =
1
3
( 3χc (b)− 2χs (b) + χl (b)) ,

∆χ0 (b) = kb ( 2χs (b)− χl (b)) ,

Dχ0 (b) = χs (b)− χl (b) + 2k2b2χl (b) .

(5.2)

These functions can now be inserted into the Fourier-
Bessel representation of eq. (3.9) to arrive at Wallace’s
eikonalised scattering amplitudes. As expected, the result-
ing amplitudes reproduce the correct first Born approxi-
mation in the limiting case of a weak potential.

Noting that the operator in eq. (4.5) does not act on
the combination kb, we define

χγβ (b) = − µ
2

2k3

{
1 + b

∂

∂b
− k ∂

∂k

} ∞∫
−∞

dz Vγ ( r)Vβ (r) ,

(5.3)
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where (γ, β) = (c, s, l). Using this together with eq. (4.7),
we find the first quantum corrections:

χ̄1 (b) =
2
9
(kb)4 χll + (kb)2

(
2
3
χss − 1

18
χll − 4

9
χls

)

+χcc +
1
6
χll +

1
2
χss +

2
3
χcl − 4

3
χcs − 5

9
χls ,

∆χ1 (b) =
4
3
(kb)3

(
χls − 1

2
χll

)
− (kb)

×
(
2χss +

1
3
χll + 2χcl − 5

3
χls − 4χcs

)
,

Dχ1 (b) = −2
3
(kb)4 χll + (kb)2

(
2χss +

5
2
χll + 4χcl

−16
3
χls

)
− 3
2
χss − 5

6
χll − 2χcl +

7
3
χls + 2χcs .

(5.4)
Expanding the profile functions in eqs. (3.5), (3.7), and

(3.8) in powers of the potential strength and retaining
terms only up to second order, leads to

SF (b) ΓA (b) ∼
{
χc+ χcc+ iχ2

c + (kb)2
(
2
3
χss +

i

3
χ2

s

)

+
(
−5 (kb)2 + 4 (kb)4

) [
1
18
χll +

i

36
χ2

l

]}
,

SF (b) ΓB (b) ∼ 1
2 sin θ

{
(kb)2

(
1
2
χ2

s − 2χcχs + 2iχs

− i
2
χss + 2iχcs

)
+

(
−1
4
+ 5 (kb)2 + 4 (kb)4

)

×
[
i

6
χls − i

8
χll − 1

6
χlχs +

1
8
χ2

l

]}
,

SF (b) Γ k
c (b) ∼ 1

sin2 θ

{
(kb)2

(
− χl − χcl +

3
2
χls

−1
2
χss − iχcχl +

3i
2
χlχs − i

2
χ2

s

)

− 1
24

(
1
4
+ 7 (kb)2 − 4 (kb)4

) [
χll + iχ2

l

]}
.

(5.5)
The main difference between these spin-one expres-

sions and the corresponding ones for the spin-zero and
spin-half cases is that, due to the extra b(kb)2 coefficient
that appears in the spin-one profile functions, we here need
to retain one term higher in the perturbative operator
SF (b), namely

SF (b) ∼
[
1 +

1
24k2

(
∂

∂b

)3

b

]
. (5.6)

For example,

ΓB (b) |1st order ∼ i

sin θ

[
(kb)2 − 1

4

]
χs (b) . (5.7)

From the structure of the operator in eq. (3.4), it
follows that the extra kb factor requires us to include

Fig. 1. Differential cross-section σ and tensor analysing power
T20 for d-58Ni elastic scattering at an incident deuteron energy
of 400 MeV. The dot-dashed and the dashed curves represent
the observables calculated using the eikonalised amplitudes
with and without corrections, respectively. The solid curve rep-
resents a numerical resolution of the Schrödinger equation us-
ing the DDTP program [15].

the second term in the series for SF (b). To first order
in the potential strength, the eikonal validity condition,
|kχ(b)| � |∇χ(b)|, allows us to neglect all derivatives of
the phase function arising from this operator; these are
the unitarity corrections mentioned earlier. Hence we find

SF (b) ΓB (b) |1st order ∼ i (kb)2

sin θ
χs (b) . (5.8)

Higher-order terms involve both kinematic (unitarity)
and dynamical corrections, although the former are of the
order 1/k smaller than the latter.

6 Application to deuteron-nucleus elastic
scattering

The deuteron is the simplest spin-one hadronic probe
and innumerable experimental and theoretical studies of
deuteron-nucleus elastic scattering have been undertaken.
The deuteron internal structure reveals itself through the
presence of a second-rank tensor contribution to the po-
tential describing the d-A elastic amplitude. In this paper
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Fig. 2. Tensor analysing powers T21 (×103) and T22 for d-58Ni
elastic scattering at 400 MeV. The curves are as in fig. 1.

we have tested the formalism of the previous section in
the case of d-58Ni elastic scattering at incident deuteron
energies of 400 and 700 MeV by comparing the results
obtained with and without the eikonal corrections with
those calculated numerically by solving the d-A two-body
problem exactly via a partial-wave decomposition of the
Schrödinger equation using the DDTP program [15]. In
the Watanabe single-folding model [16], the d-A opti-
cal potential is obtained by folding the sum of Vp and
Vn, evaluated at half the incident deuteron energy, over
the deuteron ground-state wave function. At the incident
deuteron energies of interest here (400 and 700 MeV), the
nucleon-target interactions are therefore required to repro-
duce the appropriate nucleon-target scattering at 200 and
350 MeV, respectively. While nucleon data are not avail-
able for a 58Ni target at these energies, phenomenological
Dirac fits to nucleon elastic-scattering data give potential
parameters that have little energy and target mass depen-
dence and which can therefore be reliably interpolated to
the target and energy required. For this reason Vp and
Vn were taken as Schrödinger-equivalent reductions [17] of
the global Dirac optical-potential fit of Hama et al. [18] to
available nucleon scattering data (which included energies
from 200 to 1000 MeV and targets of mass range 40–208).
The folded deuteron potentials are evaluated in coordinate
space using the techniques of Keaton and coworkers [19].
Early studies [20–22] of polarised deuteron scattering at

Fig. 3. Differential cross-section σ and tensor analysing power
T20 for d-58Ni elastic scattering at 700 MeV. The curves are as
in fig. 1.

these energies have shown that these folded potentials can,
to a large extent, reproduce the elastic-scattering observ-
ables very well. For simplicity, we have assumed that the
spin-orbit and the TL tensor potentials have the same ra-
dial distribution.

The results for the differential cross-section and
deuteron tensor and vector analysing powers are shown
in figs. 1 to 5, where we compare the eikonal amplitudes
(eq. (5.2), dashed curve) to the results including the first
quantum corrections (eq. (5.4), dot-dashed curve) and
the exact calculations (solid curves). The graphs clearly
demonstrate that a significant improvement follows when
the eikonal corrections are introduced, especially for the
analyzing powers T20 and T22. Nevertheless, there are still
significant differences between the results of the corrected
eikonal approach and those obtained from the DDTP pro-
gram, more noticeably at larger angles and at higher en-
ergy, suggesting that higher-order quantum corrections
are perhaps important here. The differences in the T21

and T11 analysing powers are smaller and those in the
differential cross-section smaller still.

7 Discussion

Starting from the partial-wave representation, we have
developed a generalised Fourier-Bessel expansion of the
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Fig. 4. Tensor analysing powers T21(×103) and T22 for d-58Ni
elastic scattering at 700 MeV. The curves are as in fig. 1.

amplitude for the scattering of a spin-one particle from
a spinless target. In the spin-zero case, Wallace [5,7] has
shown that the eikonal-phase function is the first term
in an expansion of the WKB phase function in powers
of the potential strength. The higher-order terms can be
thought of as modifying the straight-line path of the parti-
cle in the potential and replacing it with the more realistic
curved trajectory. These modifications recover the missing
imaginary part of the second Born term and improve also
the real part, leading to better agreement with the second
Born term. Though we have studied the scattering of spin-
one particles from a spinless target, the formalism could
be modified to describe the central, spin-orbit and one of
the spin-spin potentials for the scattering of two spin-half
particles.

Byron et al. [23] have carried out a systematic study
of the eikonal approximation, comparing the eikonal-Born
series and the Wallace eikonal expansion. They report
that, for a Yukawa potential in the weak-coupling limit,
the eikonal approximation is consistently worse than the
second Born approximation. Whereas, as the coupling is
increased, the eikonal method becomes remarkably good
at all angles. Their work also shows that the imaginary
part of the Wallace amplitude improves on its eikonal
counterpart and, in the large-angle limit, produces results
that are more accurate than the imaginary part of the
second Born amplitude.

Fig. 5. The upper and lower graphs represent iT11 for d-58Ni
elastic scattering at 400 and 700 MeV, respectively. The curves
are as in fig. 1.

Iseri et al. [24,25] have studied the spin-dependent in-
teractions Tr and TL for deuteron scattering and have
demonstrated that a phenomenological TL-type tensor in-
teraction considerably improves the fit to the experimen-
tal data on the Ayy analysing power, while moderately
improving Ay. Al Khalili et al. [26–28] have shown that
the inclusion of coupling to the np singlet channel induces
a TL tensor interaction that has a considerable effect on
the tensor analysing power Ayy.

Though there have been extensions of the Wallace ap-
proach for the scattering of spin-half particles [10,29],
there seems to have been no previous attempt to investi-
gate the higher-order terms of Wallace’s expansion in the
case of spin-one scattering, even for the limited choice of
the tensor potential discussed here. We have compared our
results with a numerical calculation employing plausible d-
58Ni potentials at 400 and at 700 MeV. The improvements
from the corrections are very satisfactory and demonstrate
clearly the need for the Wallace terms at intermediate en-
ergies. However, at large momentum transfers there are
still discrepancies for T20 and T22, suggesting that even
higher-order corrections may be needed.

A more worrying problem is that there is no obvious
way of extending our work to include the other two tensor
potentials, which do not commute with the ones consid-
ered here; they mix states of different l. As a consequence,
they do not exponentiate and it is hard to include them
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other than in an eikonal DWBA approach. Whether this
is sufficient will, of course, depend upon the strength of
such terms.

We wish to thank Professor R.C. Johnson for helpful com-
ments.

Appendix A.

In this appendix we present, for completeness, observables
for deuteron elastic scattering from a spin-zero nucleus in
the Madison frame, which is defined such that the z-axis is
along the direction of ki × kf . In this frame the scattering
matrix is of the form

Mm =


Am Bm Cm

Dm Em −Dm

Cm −Bm Am


 . (A.1)

Only four of these amplitudes are independent, since
they satisfy the relation

Cm = (Am − Em)−
√
2 (Bm +Dm) cot θ . (A.2)

The scattering amplitudes are related to those defined
by eq. (2.5) through

Am =
1
3
[
3A− Cn + Ck

(
3 cos2 θ − 1

)]
,

Bm = − i√
2
B +

sin θ
2
√
2
Ck ,

Cm = −1
2
[
Cn − Ck sin2 θ

]
,

Dm =
i√
2
B +

sin θ
2
√
2
Ck ,

Em = A+
1
3
Cn +

1
3
Ck

(
3 cos2 θ − 1

)
.

(A.3)

The differential cross-section and analysing powers in
a spherical basis are then given by [30],

3
dσ
dΩ

= 2|Am|2+ 2|Bm|2+ 2|Cm|2+ |Dm|2+|Em|2,
√

3
2
dσ
dΩ
iT11= Im[B∗

m (Am − Cm) + E∗
mDm] ,

3√
2
dσ
dΩ
T20= |Am|2− 2|Bm|2 + 2|Cm|2 + |Dm|2− |Em|2,

√
3
2
dσ
dΩ
T21= −Re[B∗

m (Am − Cm) + E∗
mDm] ,

√
3
dσ
dΩ
T22= 2Re (A∗

mCm)− |Dm|2 .
(A.4)
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